Multivariate Verfahren 1. Some probability theory

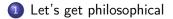
Hannah Schulz-Kümpel

Department of Statistics, LMU Munich

Summer semester 2024

《曰》 《聞》 《臣》 《臣》 三臣

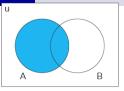
We will start at the very beginning: The realm of probability theory!

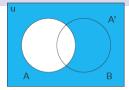


Probability spaces and operations

Random Variables and univariate distributions

E 5 4 E 5





A' the complement of A

Quick set theory reminder:



QUESTION:

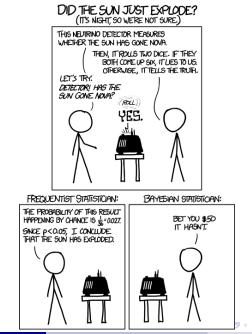
What is your understanding of the term "probability"?

Hannah Schulz-Kümpel

Multivariate Verfahren

4/41

A B F A B F



Hannah Schulz-Kümpel

э

프 제 프 제

Mathematics is here to help!

- So is there no "true" definition of probability?!
- Actually, there are two equivalent ways of formalizing the concept of probability:
 - Cox's theorem
 - The axioms of Kolmogorov (probability axioms)
 → what we will focus on, since much more popular.

• • = • • = •

Kolmogorov axioms - heuristic version I

- The axiomatic foundations of modern probability theory were laid only as recently as 1933!
- Specifically, they were published in the book *Foundations of the Theory of Probability* by Andrey Kolmogorov.

Kolmogorov axioms - heuristic version II

Heuristically, for an event space S, i.e. the set of all possible events, the axioms state the following:

Axiom 1: For any event E, the probability of E is greater or equal to zero.

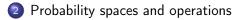
Axiom 2: The probability of the union of all events equals 1.

Axiom 3: For a countable sequence of mutually exclusive events E_1, E_2, E_3, \ldots the probability of any of these events occurring is equal to the sum of each of the events occurring.

イロト イヨト イヨト -

Contents

Let's get philosophical



Random Variables and univariate distributions

- 4 回 ト 4 回 ト

Formalizing probability I

- Of course, to derive the probability calculus and more complex results (like the CLT) which most of applied statistics is built on, we need a formal version of these axioms.
- Luckily, set- and measure- theory have us covered!
- We only need two definitions to get started:

Formalizing probability II

Definition (σ -Algebra)

Given a set S, a collection A of subsets of S is called σ -algebra over S, if it satisfies the following properties:

 $S \in \mathcal{A}$

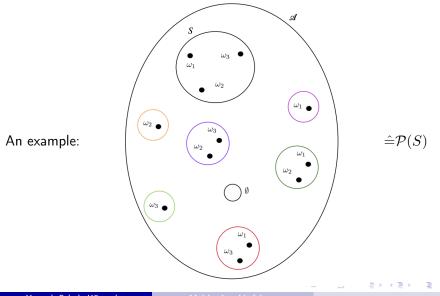
 $2 A \in \mathcal{A} \quad \Rightarrow \quad A^c \in \mathcal{A} \quad (\mathcal{A} \text{ is closed under complementation})$

• For sets $A_1, A_2, A_3, ... \in \mathcal{A} \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$ (\mathcal{A} is closed under countable unions)

For countable sets S, the largest possible σ-algebra is the power set, i.e. the set containing all subsets of S, including the empty set and S itself. The power set of S is often denoted by P(S) or 2^S.

< □ > < 同 > < 回 > < 回 > < 回 >

Formalizing probability III



Hannah Schulz-Kümpel

Formalizing probability IV

Definition (Measure)

Consider a σ -algebra \mathcal{A} over a set S. A function $\mu : \mathcal{A} \longrightarrow [0, \infty]$ that meets the following requirements

$$\mathbf{0} \ \mu(\emptyset) = 0$$

 $2 \quad \forall A \in \mathcal{A} : \quad \mu(A) \ge 0$

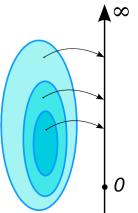
So For pairwise disjoint sets $A_1, A_2, A_3, \ldots \in \mathcal{A} \implies \mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i).$

is called measure.

• Example: Cardinality. We can easily check that the function that maps any set to the number of its elements fulfills the above definition of measure on σ -algebra $\mathcal{P}(S)$ for any finite set S.

Formalizing probability V

 So measures are mathematical objects that quantify some definition of set-size:



By Oleg Alexandrov - Own work based on: Measure illustration.png, Public Domain, https://commons.wikimedia.org/w/index.php?curid=32489121

Formalizing probability VI

- Having defined the concepts of σ -algebra and measure, we can formalize the Kolmogorov axioms by
 - representing events as sets and
 - defining probability as a measure.

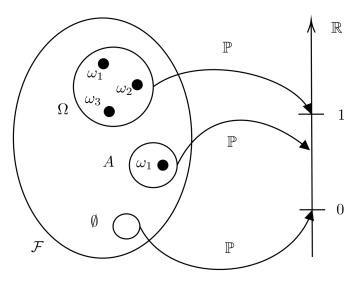
Definition (Probability measure)

Consider a σ -algebra \mathcal{F} over a set Ω . A measure $P : \mathcal{F} \longrightarrow [0, \infty]$ with $P(\Omega) = 1$ is called a **probability measure** on \mathcal{F} .

 Note that by the definition of measure, the following has to hold for any probability measure: ∀A ∈ F : P(A) ∈ [0, 1]. This is why probability measures are often directly defined via P : F → [0, 1].

イロン イ理 とくほとう ほんし

Visualizing probability measures



Source: https://maurocamaraescudero.netlify.app/post/visualizing-measure-theory-for-markey-chaigs/ oq (>

Probability spaces

Definition (Probability space)

A probability space (Ω, \mathcal{F}, P) consists of a nonempty set Ω , a σ -algebra \mathcal{F} over Ω and a probability measure P on \mathcal{F} .

Now, by the definition of σ -algebra and probability measure the Kolmogorov axioms automatically hold and can be formally expressed as follows:

Axiom 1: $P(A) \ge 0 \quad \forall A \in \mathcal{F}.$

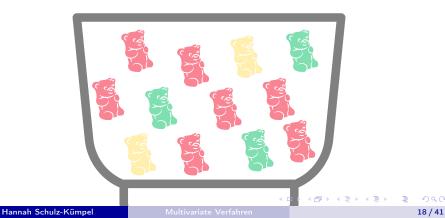
Axiom 2: $P(\Omega) = 1$.

Axiom 3: For pairwise disjoint sets $A_1, A_2, A_3, ... \in \mathcal{A}$ $P\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \sum_{i \in \mathbb{N}} P(A_i).$

Hannah Schulz-Kümpel

Example: Gummy bears

• Consider a bowl with 2 yellow, 3 green, and 7 red gummy bears from which we want to randomly pick one.



Example: Gummy bears

• Here, we have a probability space consisting of

•
$$\Omega = \{\{red\}, \{green\}, \{yellow\}\}$$

• $\mathcal{F} = \left\{ \emptyset, \{red\}, \{green\}, \{yellow\}, \{\{red\}, \{green\}\}, \\ \{\{red\}, \{yellow\}\}, \{\{yellow\}, \{green\}\}, \Omega \right\} \rightarrow \mathsf{Why}?$

•
$$P: \mathcal{F} \longrightarrow [0,1], P(A) \mapsto \begin{cases} \frac{7}{12}, & \text{if } A = \{red\}, \\ \frac{1}{4}, & \text{if } A = \{green\}, \\ \frac{1}{6}, & \text{if } A = \{yellow\}, \\ 0, & \text{otherwise.} \end{cases}$$

Basic probability operations

- From the thus far established theory, we already automatically get some fundamental rules of probability, such as, for a probability space (Ω, \mathcal{F}, P) and $A, B \in \mathcal{F}$:
 - $P(A) = 1 P(A^c)$, because $1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c)$.

•
$$\mathbf{P}(\emptyset) = 0$$
, because $\Omega^c = \emptyset$.

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$, with $P(A \cap B) = 0$ for mutually exclusive events A and B, obviously.
- But we are still missing something, right? YES - the concept of dependence!

イロト 不得下 イヨト イヨト 二日

(In)dependence

Definition

Again, consider a probability space (Ω, \mathcal{F}, P) .

• Two events $A, B \in \mathcal{F}$ are called **independent**, if

$$\mathbf{P}(A \cap B) = \mathbf{P}(A) \mathbf{P}(B) \,.$$

For B ∈ F, the conditional probability given B for any A ∈ F is defined by

$$\mathbf{P}(A|B) := \begin{cases} \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}, & \text{if } \mathbf{P}(B) > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Bayes' formula

• Note that, since $A \cap B = B \cap A$, it follows that

$$P(A \cap B) = P(A|B) P(B) = P(B|A) P(A) = P(B \cap A).$$

• From the equality in the middle, we immediately get Bayes' formula

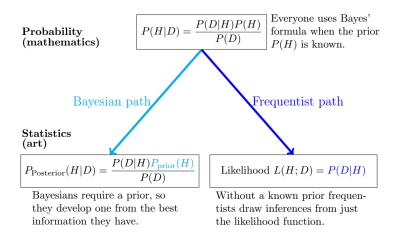
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

for any $B \in \mathcal{F}$ with $P(B) \neq 0$.

3

< ロ > < 同 > < 三 > < 三 > <

Frequentist vs. Bayesian approach



source: Philippe Rigollet. 18.650 Statistics for Applications. Fall 2016. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

< □ > < 同 > < 回 > < 回 > < 回 >

Contents

Let's get philosophical

2) Probability spaces and operations

Random Variables and univariate distributions

3

(a)

Random variables (formal definition)

- You are probably already at least vaguely aware that random variables are functions, but usually ignore this fact in practice.
- Let's take another look at the definition of random variables, given the theoretical background we have just established.

Definition (Random Variables)

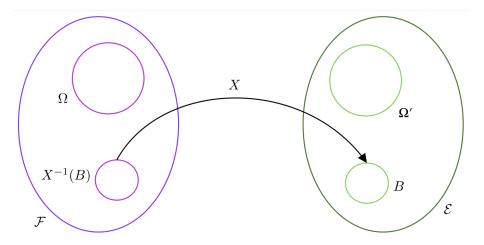
Consider a probability space (Ω, \mathcal{F}, P) and a measurable space (Ω', \mathcal{E}) , i.e. Ω' is a nonempty set and \mathcal{E} a σ -algebra over Ω' . A **random variable** with values in (Ω', \mathcal{E}) is any measurable function

$$X: \Omega \longrightarrow \Omega', \quad \omega \mapsto X(\omega),$$

i.e. any function $X:(\Omega,\mathcal{F})\longrightarrow (\Omega',\mathcal{E})$ with

$$\forall E \in \mathcal{E} : \quad X^{-1}(E) := \{ \omega \in \Omega | X(\omega) \in E \} \in \mathcal{F} \,.$$

Visualizing random variables



Source: https://maurocamaraescudero.netlify.app/post/visualizing-measure-theory-for-markov-chains/

イロト イヨト イヨト イヨト

Usual choices for (Ω', \mathcal{E}) I

- Statisticians almost exclusively deal with real random variables, i.e. random variables that take values in \mathbb{R} (or, depending on an authors definition \mathbb{R}^p , $p \in \mathbb{N}$) we too will only consider real random variables from here on out.
- While this course's objective is to cover *multivariate statistics*, we will focus on one dimensional random variables in this lecture (i.e. X : Ω → Ω' ⊆ ℝ) and extend to higher dimensions a bit later.
- Fundamentally, we will usually deal with two different "kinds" of random variables:

イロト 不得下 イヨト イヨト 二日

Usual choices for (Ω', \mathcal{E}) II

• Discrete random variables have a countable image $\Omega'\subseteq\mathbb{R}$, such as the natural numbers $\mathbb{N}.^1$

The power set $\mathcal{P}(\Omega')$ is usually chosen as the corresponding σ -algebra.

- Continuous random variables have image $\Omega' = \mathbb{R}$ and² the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is usually chosen as the corresponding σ -algebra.
 - There is some more complex theory behind Borel- sets and σ -algebras, but for the purposes of this lecture you may simply remember the following:
 - B(ℝ) is the σ-algebra generated by the open sets, i.e., if O denotes the collection of all open subsets of ℝ, then B(ℝ) = σ(O).

 1 Technically, there is an alternative construction option - ask about it if you are interested ;)

²Having $\Omega' = \mathbb{R}$ is not technically a sufficient condition for a random variable to be continuous, they also need a suitable density - more on that later $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Hannah Schulz-Kümpel

Distributions (formal definition)

- At first glance, this formal definition might seem a little unnecessarily complicated, but this formal set up gives rise to all kinds of relevant properties and results that are constantly used in applied statistics!
- The same goes for the formal definition of distribution:

Definition (Distributions)

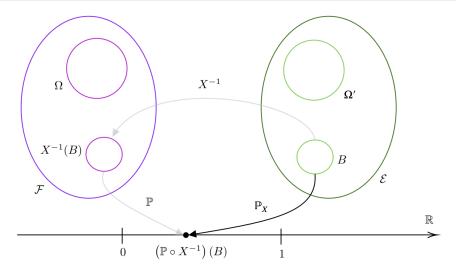
Given a probability space (Ω, \mathcal{F}, P) and a random variable X with values in (Ω', \mathcal{E}) , we define the **distribution** of X as the probability measure

$$\mathbf{P}_X := \mathbf{P} \circ X^{-1} \,,$$

i.e. a function $P_X : \mathcal{E} \longrightarrow [0, 1]$.

イロト イヨト イヨト

Visualizing formal distributions



Source: https://maurocamaraescudero.netlify.app/post/visualizing-measure-theory-for-markov-chains/

Distributions as we routinely use them

- You are probably already familiar with the cumulative distribution function (CDF) F(x) ≡ P(X ≤ x) of a random variable X.
- Given the established formal definition of distribution, we can now understand the formal definition of CDF as, for a probability space (Ω, F, P) and random variable X with values in (Ω', E):

$$F(x) := \mathcal{P}_X([-\infty, x]) = \mathcal{P}\left(\{\omega \in \Omega | X(\omega) \le x\}\right) \quad \forall x \in \mathbb{R} \,.$$

• The common notation $P(X \le x)$ is therefore a simplification of the term $P(\{\omega \in \Omega | X(\omega) \le x\})$.

イロト イヨト イヨト ・ヨ

How is $P(X \le x)$ calculated? I

• The general idea for calculating $P(X \le x)$ is to calculate it as in interval $\int_{-\infty}^{x} dP_X$, which is defined separately for continuous and discrete random variables:

Definition

For a discrete random variable X, we have neatly chosen a construction where X has the **countable** image Ω' .

So, given the function $p: \mathbb{R} \longrightarrow [0,1], x \mapsto P_X(\{x\})$ with support $\operatorname{supp}(p) \equiv \{x \in \mathbb{R} : p(x) \neq 0\} \subset \Omega'$, we have

$$F(x) = \int_{-\infty}^{x} \mathrm{d} \, \mathcal{P}_{X} = \sum_{a \in [-\infty, x] \cap \mathrm{supp}(p)} p(a) \,.$$

The function p is referred to as **probability (mass) function**. Note that, by definition, we automatically get $\sum_{x \in \text{supp}(p)} p(x) = 1$.

How is $P(X \le x)$ calculated? II

Definition

For a continuous random variable X, we have

$$F(x) = \int_{-\infty}^{x} \mathrm{d} P_{X} = \int_{-\infty}^{x} f(x) \mathrm{d}\lambda(x) \,,$$

where λ denotes the *Lebesgue measure* and f the **probability density function**, often simply density, defined as the derivative of the CDF. Formally, we say that a probability measure has a density w.r.t. the Lebesgue measure λ , if the CDF F is absolutely continuous w.r.t. λ and then $f(x) := \frac{\partial F(x)}{\partial x}$.

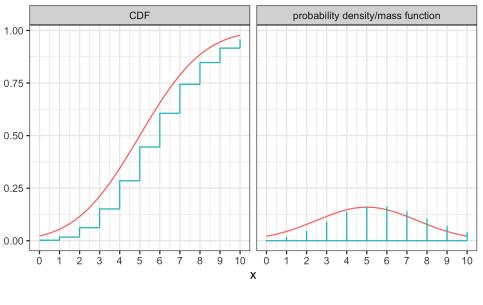
Note that we now have, by definition of P_X , that any density f must be a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ with $f(x) \ge 0 \ \forall x \in \mathbb{R}$ and $\int_{\mathbb{R}} f(x) dx (\equiv \int_{\mathbb{R}} f(x) d\lambda(x)) = 1$, which is the commonly taught definition of density.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example: Normal and Poisson distributions

```
library(dplyr)
library(tidyr)
library(ggplot2)
x<-seq(0,10,by=0.001)
df < -data.frame(x=rep(x,2), which=c(rep("probability density/
        mass function",length(x)),rep("CDF",length(x))))
df$pois<-c(dpois(x,6),ppois(x,6))</pre>
df norm <- c (dnorm (x, 5, 2.5), pnorm (x, 5, 2.5))
df<-gather(df,dist,value,3:4) %>% as.data.frame()
ggplot(df,aes(x,value, colour = dist))+geom_line()+
  theme_bw()+scale_x_continuous(breaks=0:10)+
  ylab("")+theme(legend.position="bottom")+
  facet_wrap(~which)
```

Random Variables and univariate distributions



dist — norm — pois

Outlook: Probabilistic modelling for regression I

Let's quickly consider how probabilistic thinking comes into play for the most simple of linear regressions. (*This will be discussed in more detail later!*)

- Setting: we would like to model an outcome variable Y as a linear function of some regressor X.
- Probably you have seen

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \,,$$

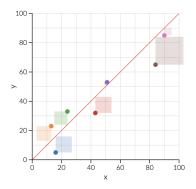
where ε_i is an error term.

• Now, one approach to solving this problem (i.e. finding values for β_0 and β_1) is simply minimizing the error terms with regards to some loss function.

Hannah Schulz-Kümpel

Outlook: Probabilistic modelling for regression II

If we choose squared loss, we get the popular OLS, i.e. minimizing the sum of squares in the following graphic:



(screenshotted from a very cool interactive post on OLS).

Hannah Schulz-Kümpel

Outlook: Probabilistic modelling for regression III

- For the OLS solution, which we will talk more about in the next lecture, no probabilistic modelling is required at all!
- However, our interpretation is technically also limited how would we phrase predicitions based on this? (keywords: causal inference; probabilistic modelling)
- Now, let's consider the following setting:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \,,$$

with
$$\varepsilon_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$$
.

Outlook: Probabilistic modelling for regression IV

• It immediately follows that we consider the y_i to be realizations of a random variable $Y\sim N(\mathbb{E}[Y|X],\sigma^2)$ with

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X \,.$$

• Now, if we take a frequentist view of things - *do not worry, this will be discussed more later* - all our information is given by the **Likelihood**

$$\mathcal{L}\left(y;\beta = (\beta_0,\beta_1)^{\top}\right) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y_i - (\beta_0 + \beta_1 x_i)}{\sigma}\right)^2} \\ = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\sum_{i=1}^{n} -\frac{1}{2}\left(\frac{y_i - (\beta_0 + \beta_1 x_i)}{\sigma}\right)^2}$$

and we find suitable estimates for β_0 and β_1 by maximizing the Likelihood $\Rightarrow \hat{\beta} = \underset{\beta = (\beta_0 \beta_1)^\top \in \mathbb{R}^2}{\operatorname{argmax}} \mathcal{L}(y; \beta) = \underset{\beta = (\beta_0 \beta_1)^\top \in \mathbb{R}^2}{\operatorname{argmax}} \log \left(\mathcal{L}(y; \beta) \right).$

Hannah Schulz-Kümpel

Outlook: Probabilistic modelling for regression V

• This results in (we will look at the general Maximum Likelihood transform for linear regression later)

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$
$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}))^{2}$$

• We will later see that the maximum likelihood estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are the same as the OLS ones for linear regression!

(人間) トイヨト イヨト

Outlook: Probabilistic modelling for regression VI

• But, a cool thing about specifically specifying the model using probabilistic tools is that we can then say

"For an observed X-value x_{value} , we predict the expectation of the target variable Y to be equal to $\hat{\beta}_0 + \hat{\beta}_1 x_{value}$ ".

• Still, we should never loose sight of all the assumptions that we are making! What are they in our specific example?