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We will start at the very beginning:
The realm of probability theory!

1 Let’s get philosophical

2 Probability spaces and operations

3 Random Variables and univariate distributions

Hannah Schulz-Kümpel Multivariate Verfahren 2 / 41



Quick set theory reminder:
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Let’s get philosophical

QUESTION:

What is your understanding of the term "probability"?
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Let’s get philosophical
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Let’s get philosophical

Mathematics is here to help!

So is there no ”true” definition of probability?!

Actually, there are two equivalent ways of formalizing the concept of
probability:

Cox’s theorem

The axioms of Kolmogorov (probability axioms)
→ what we will focus on, since much more popular.
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Let’s get philosophical

Kolmogorov axioms - heuristic version I

The axiomatic foundations of modern
probability theory were laid only as
recently as 1933!

Specifically, they were published in the
book Foundations of the Theory of
Probability by Andrey Kolmogorov.
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Let’s get philosophical

Kolmogorov axioms - heuristic version II

Heuristically, for an event space S, i.e. the set of all possible events, the
axioms state the following:

Axiom 1: For any event E, the probability of E is greater or equal to
zero.

Axiom 2: The probability of the union of all events equals 1.

Axiom 3: For a countable sequence of mutually exclusive events
E1, E2, E3, ... the probability of any of these events occurring
is equal to the sum of each of the events occurring.
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Probability spaces and operations
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Probability spaces and operations

Formalizing probability I

Of course, to derive the probability calculus and more complex results
(like the CLT) which most of applied statistics is built on, we need a
formal version of these axioms.

Luckily, set- and measure- theory have us covered!

We only need two definitions to get started:
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Probability spaces and operations

Formalizing probability II

Definition (σ-Algebra)

Given a set S, a collection A of subsets of S is called σ-algebra over S, if it
satisfies the following properties:

1 S ∈ A

2 A ∈ A ⇒ Ac ∈ A (A is closed under complementation)

3 For sets A1, A2, A3, ... ∈ A ⇒
⋃
i∈N

Ai ∈ A (A is closed under countable

unions)

For countable sets S, the largest possible σ-algebra is the power set,
i.e. the set containing all subsets of S, including the empty set and S
itself. The power set of S is often denoted by P(S) or 2S .
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Probability spaces and operations

Formalizing probability III

An example: =̂P(S)
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Probability spaces and operations

Formalizing probability IV

Definition (Measure)

Consider a σ-algebra A over a set S. A function µ : A −→ [0,∞] that
meets the following requirements

1 µ(∅) = 0

2 ∀A ∈ A : µ(A) ≥ 0

3 For pairwise disjoint sets
A1, A2, A3, ... ∈ A ⇒ µ

( ⋃
i∈N

Ai
)

=
∑
i∈N

µ(Ai).

is called measure.

Example: Cardinality. We can easily check that the function that
maps any set to the number of its elements fulfills the above definition
of measure on σ-algebra P(S) for any finite set S.
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Probability spaces and operations

Formalizing probability V

So measures are mathematical objects that quantify some definition of
set-size:

By Oleg Alexandrov - Own work based on: Measure illustration.png, Public Domain, https://commons.wikimedia.org/w/index.php?curid=32489121
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Probability spaces and operations

Formalizing probability VI

Having defined the concepts of σ-algebra and measure, we can
formalize the Kolmogorov axioms by

representing events as sets and

defining probability as a measure.

Definition (Probability measure)

Consider a σ-algebra F over a set Ω. A measure P : F −→ [0,∞] with
P(Ω) = 1 is called a probability measure on F .

Note that by the definition of measure, the following has to hold for
any probability measure: ∀A ∈ F : P(A) ∈ [0, 1]. This is why
probability measures are often directly defined via P : F −→ [0, 1].
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Probability spaces and operations

Visualizing probability measures

Source: https://maurocamaraescudero.netlify.app/post/visualizing-measure-theory-for-markov-chains/
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Probability spaces and operations

Probability spaces

Definition (Probability space)

A probability space
(
Ω,F ,P

)
consists of a nonempty set Ω, a σ-algebra F

over Ω and a probability measure P on F .

Now, by the definition of σ-algebra and probability measure the Kolmogorov
axioms automatically hold and can be formally expressed as follows:

Axiom 1: P(A) ≥ 0 ∀A ∈ F .

Axiom 2: P(Ω) = 1.

Axiom 3: For pairwise disjoint sets A1, A2, A3, ... ∈ A
P
( ⋃
i∈N

Ai
)

=
∑
i∈N

P(Ai).
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Probability spaces and operations

Example: Gummy bears

Consider a bowl with 2 yellow, 3 green, and 7 red gummy bears from
which we want to randomly pick one.
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Probability spaces and operations

Example: Gummy bears

Here, we have a probability space consisting of

Ω =
{
{red}, {green}, {yellow}

}
F =

{
∅, {red}, {green}, {yellow},

{
{red}, {green}

}
,{

{red}, {yellow}
}
,
{
{yellow}, {green}

}
,Ω

}
→ Why?

P : F −→ [0, 1], P(A) 7→


7
12 , if A = {red},
1
4 , if A = {green},
1
6 , if A = {yellow},
0, otherwise.
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Probability spaces and operations

Basic probability operations

From the thus far established theory, we already automatically get
some fundamental rules of probability, such as, for a probability space(
Ω,F ,P

)
and A,B ∈ F :

P(A) = 1− P(Ac), because 1 = P(Ω) = P(A ∪Ac) = P(A) + P(Ac).

P(∅) = 0, because Ωc = ∅.

P(A ∪B) = P(A) + P(B)− P(A ∩B), with P(A ∩B) = 0 for
mutually exclusive events A and B, obviously.

But we are still missing something, right?
YES - the concept of dependence!

Hannah Schulz-Kümpel Multivariate Verfahren 20 / 41



Probability spaces and operations

(In)dependence

Definition

Again, consider a probability space
(
Ω,F ,P

)
.

Two events A,B ∈ F are called independent, if

P(A ∩B) = P(A) P(B) .

For B ∈ F , the conditional probability given B for any A ∈ F is
defined by

P(A|B) :=

{
P(A∩B)
P(B) , if P(B) > 0,

0, otherwise.
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Probability spaces and operations

Bayes’ formula

Note that, since A ∩B = B ∩A, it follows that

P(A ∩B) = P(A|B) P(B) = P(B|A) P(A) = P(B ∩A) .

From the equality in the middle, we immediately get Bayes’ formula

P (A | B) =
P (B | A)P (A)

P (B)

for any B ∈ F with P(B) 6= 0.
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Probability spaces and operations

Frequentist vs. Bayesian approach

source: Philippe Rigollet. 18.650 Statistics for Applications. Fall 2016. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.
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Random Variables and univariate distributions
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Random Variables and univariate distributions

Random variables (formal definition)

You are probably already at least vaguely aware that random variables
are functions, but usually ignore this fact in practice.

Let’s take another look at the definition of random variables, given the
theoretical background we have just established.

Definition (Random Variables)

Consider a probability space (Ω,F ,P) and a measurable space (Ω′, E), i.e.
Ω′ is a nonempty set and E a σ-algebra over Ω′.
A random variable with values in (Ω′, E) is any measurable function

X : Ω −→ Ω′, ω 7→ X(ω) ,

i.e. any function X : (Ω,F) −→ (Ω′, E) with

∀E ∈ E : X−1(E) := {ω ∈ Ω|X(ω) ∈ E} ∈ F .
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Random Variables and univariate distributions

Visualizing random variables

Source: https://maurocamaraescudero.netlify.app/post/visualizing-measure-theory-for-markov-chains/
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Random Variables and univariate distributions

Usual choices for (Ω′, E) I

Statisticians almost exclusively deal with real random variables, i.e.
random variables that take values in R (or, depending on an authors
definition Rp, p ∈ N) - we too will only consider real random variables
from here on out.

While this course’s objective is to cover multivariate statistics, we will
focus on one dimensional random variables in this lecture (i.e.
X : Ω −→ Ω′ ⊆ R) and extend to higher dimensions a bit later.

Fundamentally, we will usually deal with two different ”kinds” of
random variables:
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Random Variables and univariate distributions

Usual choices for (Ω′, E) II

Discrete random variables have a countable image Ω′ ⊆ R, such as
the natural numbers N.1

The power set P(Ω′) is usually chosen as the corresponding σ-algebra.

Continuous random variables have image Ω′ = R and2 the Borel
σ-algebra B(R) is usually chosen as the corresponding σ-algebra.

There is some more complex theory behind Borel- sets and σ-algebras,
but for the purposes of this lecture you may simply remember the
following:

B(R) is the σ-algebra generated by the open sets, i.e., if O denotes the
collection of all open subsets of R, then B(R) = σ(O).

1Technically, there is an alternative construction option - ask about it if you are
interested ;)

2Having Ω′ = R is not technically a sufficient condition for a random variable to be
continuous, they also need a suitable density - more on that later.
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Random Variables and univariate distributions

Distributions (formal definition)

At first glance, this formal definition might seem a little unnecessarily
complicated, but this formal set up gives rise to all kinds of relevant
properties and results that are constantly used in applied statistics!

The same goes for the formal definition of distribution:

Definition (Distributions)

Given a probability space (Ω,F ,P) and a random variable X with values in
(Ω′, E), we define the distribution of X as the probability measure

PX := P ◦X−1 ,

i.e. a function PX : E −→ [0, 1].
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Random Variables and univariate distributions

Visualizing formal distributions

Source: https://maurocamaraescudero.netlify.app/post/visualizing-measure-theory-for-markov-chains/
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Random Variables and univariate distributions

Distributions as we routinely use them

You are probably already familiar with the cumulative distribution
function (CDF) F (x) ≡ P(X ≤ x) of a random variable X.

Given the established formal definition of distribution, we can now
understand the formal definition of CDF as, for a probability space
(Ω,F ,P) and random variable X with values in (Ω′, E):

F (x) := PX([−∞, x]) = P
(
{ω ∈ Ω|X(ω) ≤ x}

)
∀x ∈ R .

The common notation P(X ≤ x) is therefore a simplification of the
term P

(
{ω ∈ Ω|X(ω) ≤ x}

)
.
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Random Variables and univariate distributions

How is P(X ≤ x) calculated? I
The general idea for calculating P(X ≤ x) is to calculate it as in
interval

∫ x
−∞ d PX , which is defined separately for continuous and

discrete random variables:

Definition
For a discrete random variable X, we have neatly chosen a construction
where X has the countable image Ω′.
So, given the function p : R −→ [0, 1], x 7→ PX({x}) with support
supp(p) ≡ {x ∈ R : p(x) 6= 0} ⊂ Ω′, we have

F (x) =

∫ x

−∞
d PX =

∑
a∈[−∞,x]∩supp(p)

p(a) .

The function p is referred to as probability (mass) function.
Note that, by definition, we automatically get

∑
x∈supp(p)

p(x) = 1.
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Random Variables and univariate distributions

How is P(X ≤ x) calculated? II

Definition
For a continuous random variable X, we have

F (x) =

∫ x

−∞
d PX =

∫ x

−∞
f(x)dλ(x) ,

where λ denotes the Lebesgue measure and f the probability density
function, often simply density, defined as the derivative of the CDF.
Formally, we say that a probability measure has a density w.r.t. the
Lebesgue measure λ, if the CDF F is absolutely continuous w.r.t. λ and
then f(x) := ∂F (x)

∂x .

Note that we now have, by definition of PX , that any density f must be a function f : R −→ R with

f(x) ≥ 0 ∀x ∈ R and
∫
R f(x)dx

(
≡
∫
R f(x)dλ(x)

)
= 1, which is the commonly taught definition of

density.
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Random Variables and univariate distributions

Example: Normal and Poisson distributions

library(dplyr)
library(tidyr)
library(ggplot2)

x<-seq(0,10,by=0.001)
df<-data.frame(x=rep(x,2),which=c(rep("probability density/

mass function",length(x)),rep("CDF",length(x))))
df$pois<-c(dpois(x,6),ppois(x,6))
df$norm<-c(dnorm(x,5,2.5),pnorm(x,5,2.5))

df<-gather(df,dist,value,3:4) %>% as.data.frame()

ggplot(df,aes(x,value, colour = dist))+geom_line()+
theme_bw()+scale_x_continuous(breaks=0:10)+
ylab("")+theme(legend.position="bottom")+
facet_wrap(~which)
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Random Variables and univariate distributions
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Random Variables and univariate distributions

Outlook: Probabilistic modelling for regression I

Let’s quickly consider how probabilistic thinking comes into play for the
most simple of linear regressions. (This will be discussed in more detail later!)

Setting: we would like to model an outcome variable Y as a linear
function of some regressor X.

Probably you have seen

yi = β0 + β1xi + εi ,

where εi is an error term.

Now, one approach to solving this problem (i.e. finding values for β0
and β1) is simply minimizing the error terms with regards to some loss
function.
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Random Variables and univariate distributions

Outlook: Probabilistic modelling for regression II

If we choose squared loss, we get the popular OLS, i.e. minimizing the sum
of squares in the following graphic:

(screenshotted from a very cool interactive post on OLS).
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Random Variables and univariate distributions

Outlook: Probabilistic modelling for regression III

For the OLS solution, which we will talk more about in the next
lecture, no probabilistic modelling is required at all!

However, our interpretation is technically also limited - how would we
phrase predicitions based on this?
(keywords: causal inference; probabilistic modelling)

Now, let’s consider the following setting:

yi = β0 + β1xi + εi ,

with εi
i.i.d.∼ N(0, σ2).
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Random Variables and univariate distributions

Outlook: Probabilistic modelling for regression IV

It immediately follows that we consider the yi to be realizations of a
random variable Y ∼ N(E[Y |X], σ2) with

E[Y |X] = β0 + β1X .

Now, if we take a frequentist view of things - do not worry, this will be
discussed more later - all our information is given by the Likelihood

L
(
y;β = (β0, β1)

>
)

=

n∏
i=1

1

σ
√

2π
e
− 1

2

(
yi−(β0+β1xi)

σ

)2

=

(
1

σ
√

2π

)n
e
∑n
i=1−

1
2

(
yi−(β0+β1xi)

σ

)2

and we find suitable estimates for β0 and β1 by maximizing the
Likelihood ⇒ β̂ = argmax

β=(β0β1)>∈R2

L(y;β) = argmax
β=(β0β1)>∈R2

log
(
L(y;β)

)
.
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Random Variables and univariate distributions

Outlook: Probabilistic modelling for regression V

This results in (we will look at the general Maximum Likelihood
transform for linear regression later)

β̂1 =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)2

β̂0 = ȳ − β̂1x̄

σ2 =
1

n

n∑
i=1

(yi − (β̂0 + β̂1xi))
2

We will later see that the maximum likelihood estimates β̂0 and β̂1 are
the same as the OLS ones for linear regression!
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Random Variables and univariate distributions

Outlook: Probabilistic modelling for regression VI

But, a cool thing about specifically specifying the model using
probabilistic tools is that we can then say

"For an observed X-value xvalue, we predict the expectation of the
target variable Y to be equal to β̂0 + β̂1xvalue".

Still, we should never loose sight of all the assumptions that we are
making! What are they in our specific example?
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